Все, что вам действительно нужно знать о машинном обучении, может уместиться на паре сотен страниц. Начнем с простой истины: машины не учатся. Типичное «машинное обучение» заключается в поиске математической формулы, которая при применении к набору входных данных (называемых «обучающими данными») даст желаемые результаты.Андрей Бурков постарался дать все необходимое, чтобы каждый мог стать отличным современным аналитиком или специалистом по машинному обучению. То, что удалось вместить в пару сотен страниц, в других книгах растянуто на тысячи. Типичные книги по машинному обучению консервативны и академичны, здесь же упор сделан на алгоритмах и методах, которые пригодятся в повседневной работе.«В наше время очень полезно иметь краткое введение в машинное обучение, на которое всегда можно давать ссылку и после которого можно быть уверенным, что человек говорит на одном с тобой языке. Попытку дать такое введение я вижу в этой книге, и мне кажется, что попытка получилась очень удачной. Книга действительно представляет читателю широкий спектр основных понятий и методов машинного обучения, которые здесь изложены корректно, хоть и по понятным причинам очень кратко.Но если книгу прочитать вдумчиво и действительно освоить то, о чем здесь говорится, этот шаг может превратиться в большой скачок. Чего я и желаю всем читателям: разбирайтесь, познавайте, интересуйтесь новым и не бойтесь трудностей. Удачи!»Сергей Николенко, директор по научным исследованиям (Chief Research Officer) платформы Neuromation, автор бестселлера «Глубокое обучение. Погружение в мир нейронных сетей» «Бурков взял на себя решение очень важной, но невероятно сложной задачи — уместить знакомство с машинным обучением в маленькую книгу. Он удачно выбрал темы — теоретические и практические — которые будут полезны и для практиков, и для читателей, понимающих, что эти первые сто страниц, которые они прочитают, закладывают прочный фундамент для дальнейшего изучения».Питер Норвиг, директор по исследованиям в компании Google, соавтор книги «Искусственный интеллект. Современный подход»«Широта тем, которые охватывает эта маленькая книга, поражает! Бурков без страха и сомнений приводит математические уравнения, которыми часто пренебрегают авторы небольших книг. Мне очень понравилось, как всего несколькими словами автор объясняет основные понятия. Книга пригодится новичкам в этой области, а также ”старожилам” — каждый сможет извлечь выгоду из такого широкого взгляда на машинное обучение.»Орельен Жерон, консультант по машинному обучению, старший инженер-программист, автор книги «Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow»