Генеративное моделирование — одна из самых обсуждаемых тем в области искусственного интеллекта. Машины можно научить рисовать, писать и сочинять музыку. Вы сами можете посадить искусственный интеллект за парту или мольберт, для этого достаточно познакомиться с самыми актуальными примерами генеративных моделей глубокого обучения: вариационные автокодировщики, генеративно-состязательные сети, модели типа кодер-декодер и многое другое.Дэвид Фостер делает понятными и доступными архитектуру и методы генеративного моделирования, его советы и подсказки сделают ваши модели более творческими и эффективными в обучении. Вы начнете с основ глубокого обучения на базе Keras, а затем перейдете к самым передовым алгоритмам. - Разберитесь с тем, как вариационные автокодировщики меняют эмоции на фотографиях- Создайте сеть GAN с нуля- Освойте работу с генеративные моделями генерации текста - Узнайте, как генеративные модели помогают агентам выполнять задачи в рамках обучения с подкреплением- Изучите BERT, GPT-2, ProGAN, StyleGAN и многое другое.
Фостер Дэвид
Дэвид Фостер — соучредитель Applied Data Science, консалтинговой компании в области данных, разрабатывающей индивидуальные решения для клиентов. Получил степень магистра по математике в Кембридже (Великобритания), и степень магистра в Уорвикском университете.
Выиграл несколько международных конкурсов по машинному обучению, в том числе конкурс InnoCentive Predicting Product Purchase. Был удостоен первой награды за визуализацию, позволившую одной из фармацевтических компании в США оптимизировать выбор места для клинических испытаний.
Активный участник онлайн-сообществ, интересующихся data science, и автор нескольких успешных статей в блоге, посвященных глубокому обучению, включая «How To Build Your Own AlphaZero AI Using Python and Keras» (http://bit.ly/2J6fGhU).